Fire-induced carbon emissions and regrowth uptake in western U.S. forests: Documenting variation across forest types, fire severity, and climate regions

نویسندگان

  • Bardan Ghimire
  • Christopher A. Williams
  • G. James Collatz
  • Melanie Vanderhoof
چکیده

[1] The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across lowto high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC yr 1 and biomass killed averaging 10.5 TgC yr , with average burn area of 2723 km yr 1 across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC yr 1 in 2008, accounting for both direct fire emissions (9.5 TgC yr ) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr ) as well as contemporary regrowth sinks (3.3 TgC yr ). A sizeable trend exists toward increasing emissions as a larger area burns annually.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

Climate change has increased the area affected by forest fires each year in boreal North America1,2. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses3–5. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we ...

متن کامل

Drought effects on large fire activity in Canadian and Alaskan forests

Fire is the dominant disturbance in forest ecosystems across Canada and Alaska, and has important implications for forest ecosystems, terrestrial carbon dioxide emissions and the forestry industry. Large fire activity had increased in Canadian and Alaskan forests during the last four decades of the 20th century. Here we combined the Palmer Drought Severity Index and historical large fire databa...

متن کامل

The fire frequency-severity relationship and the legacy of fire suppression in California forests

Fire is one of the most important natural disturbance processes in the western United States and ecosystems differ markedly with respect to their ecological and evolutionary relationships with fire. Reference fire regimes in forested ecosystems can be categorized along a gradient ranging from ‘‘fuellimited’’ to ‘‘climate-limited’’ where the former types are often characterized by frequent, lowe...

متن کامل

Large carbon release legacy from bark beetle outbreaks across Western United States.

Warmer conditions over the past two decades have contributed to rapid expansion of bark beetle outbreaks killing millions of trees over a large fraction of western United States (US) forests. These outbreaks reduce plant productivity by killing trees and transfer carbon from live to dead pools where carbon is slowly emitted to the atmosphere via heterotrophic respiration which subsequently feed...

متن کامل

Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada

Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (NEE), and consequently reduce the abi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012